

CALIBRATION AND RECONSTRUCTION IN THE NOVA DETECTORS

45th Fermilab Users Meeting June 12 - 13, 2012

ENRIQUE ARRIETA DIAZ - MICHIGAN STATE UNIVERSITY On behalf of the NOvA Collaboration

- The NOvA long baseline neutrino experiment will study v_e appearance using two high resolution, fully active scintillator detectors.
 - Near Detector at Fermilab.
 - Far Detector at Ash River, MN.
- The Collaboration built a *Near Detector* On the Surface, NDOS, at Fermilab, to use as a prototype to test, e.g. electronic components and DAQ firmware.
 - 6° off the NuMI Beam axis.
 - On the Booster Beam 2007 Europa Technology
- "34'32.84" N 89"04'55.60" W elev 271 m Mean Energy Deposition of Cosmic Ray Muons

Fermilab

- 1. Mean *ADC / cm* vs. distance, *W*. The *fit* is used to account for the variations in the light yield as a function of W.
- 2. ADC distributions for various W slices before the attenuation corrections.
- 3. ADC distributions for various W slices after the attenuation corrections.

- They are filled with Liquid Scintillator.
- The Modules are layered planes of orthogonal views.
- > The *Planes* are divided into *Cells*, and each Cell has a Wavelength Shifting Fiber to collect light.
- The light is detected by Avalanche Photo Diodes.

The experiment has more than 155

- > The NDOS measures the Charge (ADC) deposition per Cell, and from it the calibration process finds scaling factors to reconstruct the true energy deposited.
- > The approximate number of *PhotoElectrons*, *PE*, in a *Cell* per event is a rescaling of the charge at the peak of the *ADC* distribution.
- > To account for the differences in light yield due to the distance, W, of a hit in a Cell to its APD: the PE are scaled to PECorr such that $PECorr_i = PECorr_i$ means that the true energy depositions E_i and E_i are the same regardless of the W_i and W_i .

- Stopping muons are a good sample to calibrate absolute energy since the energy deposited in the last portion of their path is known.
- > The reconstructed *track length* is used in the calibration process, along with the charge deposition, to calculate scale factors, using the *Minimum Ionizing Particle* and Bethe – Bloch concepts, which allow to get true energy.
- Michel electrons studies would provide a scale factor to convert PECorr to true energy since their energy distribution is well – known.
- 4. The *Michel electron* candidates are required to be within 30 cm of the muon end point, and between 3 – 10 μ sec of the muon.
- $5 A(t) = Ae^{-t/\tau} + BG$. The timing distribution agrees with the expected value, $\tau_c = 2.123 \,\mu\text{sec}$, from cosmic μ^- and μ^+ , and shows low background, BG.

